1. S. Chakraborty and A. Hunter and D. J. Luscher. “Development of a transport-based crystal plasticity model for inter and intra granular Dislocation transport.” (Draft).
  2. S. Chakraborty and S. Ghosh, “A Physics based Phase Field Energy Functional for Fracture Derived from Atomistic-Continuum Coupled Concurrent Model”, Journal of the Mechanics and Physics of Solids, 104563 (2021).  https://doi.org/10.1016/j.jmps.2021.104563.
  3. S. Chakraborty and S. Ghosh. “A Concurrent Atomistic-Crystal Plasticity Multiscale Model for Crack Propagation in Crystalline Metallic Materials”, Computer Methods in Applied Mechanics and Engineering, 379,113748 (2021). https://doi.org/10.1016/j.cma.2021.113748
  4. S. Chakraborty and S. Ghosh. “Hyperdynamics accelerated concurrent atomistic-continuum model for developing crack propagation models in elastic crystalline materials”, Computational Materials Science, 154:212-224 (2018). https://doi.org/10.1016/j.commatsci.2018.07.064 [Editor’s Choice]
  5. J. Zhang, S. Chakraborty and S. Ghosh. “Concurrent atomistic-continuum model for developing self-consistent elastic constitutive modeling of crystalline solids with crack”, Int. J. Multiscale Comp. Eng. 15:99- 19 (2017).  http://doi.org/10.1615/IntJMultCompEng.2017020072 
  6. S. Chakraborty, J. Zhang and S. Ghosh. “Accelerated molecular dynamics simulations for characterizing plastic deformation in crystalline materials with cracks”, Computational Material Science, 121, 23-34 (2016). http://dx.doi.org/10.1016/j.commatsci.2016.04.026 [Editor’s Choice]
  7. C.S.Tiwary, S. Chakraborty, D RoyMahaPatra, K Chattopadhyay. “Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification”, Journal of Applied Physics, 115, 203502, 2014. http://dx.doi.org/10.1063/1.4879249
  8. C. S. Tiwary, J. Prakash, S. Chakraborty, D. R. Mahapatra & K.Chattopadhyay.  “Subsurface deformation studies of aluminium during wear and its theoretical understanding using molecular dynamics”, Philosophical Magazine, 98:29, 2680-2700 (2018),  https://doi.org/10.1080/14786435.2018.1502481
  9. S. Natarajan, S. Chakraborty, M. Ganapathi, M. Subramanian. “A parametric study on the buckling of functionally graded material plates with internal discontinuities using the partition of unity method”, European Journal of Mechanics – A/Solids, 44, 136-147, 2014. http://dx.doi.org/10.1016/j.euromechsol.2013.10.003
  10. S. Chakraborty, S. Natarajan, S. Singh, D. Roy Mahapatra & S.P.A. Bordas, “Optimal Numerical Integration Schemes for a Family of Polygonal Finite Elements with Schwarz–Christoffel Conformal Mapping”, International Journal for Computational Methods in Engineering Science and Mechanics, 19:4, 283-304, (2018). https://doi.org/10.1080/15502287.2018.1502218
  11. S. Natarajan, S. Chakraborty, M. Thangavel, S. Bordas and T. Rabczuk. Size-dependent free flexural vibration behavior of functionally graded nanoplates”, Computational Materials Science. 65, 74-80, 2012. http://dx.doi.org/10.1016/j.commatsci.2012.06.031A Concurrent Atomistic-Crystal Plasticity Multiscale Model for Crack Propagation in Crystalline Metallic Materials

  1. S. Chakraborty and A. Hunter and D. J. Luscher. “A dislocation transport based Crystal Plasticity model to study Structure-Property relations in Polycrystalline materials”. USNCCM, 2023.
  2. S. Chakraborty and A. Hunter and D. J. Luscher. “Development of dislocation transport based mesoscale crystal plasticity model”. TMS, 2022.
  3. S. Chakraborty and S. Ghosh.“Development of the Phase Field Free-Energy Functional from a Self-consistent Coupled Atomistic Continuum Model to Study the Ductile Fracture in Metallic Materials”. EMI, 2021.
  4. S. Chakraborty and S. Ghosh. “Concurrent Atomistic-Continuum Multiscale Model for Inelastic Modelling of Materials”. SES2019, St. Louis, MO, 2019.
  5. S. Chakraborty and S. Ghosh. “Spatial and Temporal scale bridging of Atomistic-Continuum Concurrent Multiscale Models for Inelastic modeling of materials”. WCCM2018, New York City, NY,2018.
  6. S. Ghosh, S. Chakraborty and J. Zhang. “Coupled Atomistic-Continuum Modelling for Crack Propagation”. NIST Workshop on Atomistic Simulations for Industrial Needs, Gaithersburg, USA,2018.
  7. S. Chakraborty, J. Zhang and S. Ghosh. “Characterization and Quantification of Crack Tip Plasticity in Crystalline Materials at Experimentally Achievable Strain Rate”. TMS-2016, Nashville, USA, 2016.
  8. S. Chakraborty, J. Zhang and S. Ghosh. “Near-Crack Phenomenon Modelling using Finite Temperature Atomistic-Continuum Self-consistent Method”. USACM Thematic Conference on Recent Advances in Computational Methods for Nanoscale Phenomena, U. of Michigan, Ann Arbor, USA, 2016.
  9. S. Chakraborty and D. Roy Mahapatra. “Crystal Plasticity based Material Modelling for Lamellar Microstructure”. SMiRT-22, San Francisco, USA, 2013.
  10. S. Chakraborty and D. Roy Mahapatra. “Modeling of Polycrystalline Microstructure Using Polygonal FEM”. ICCMS-2012, Hyderabad, India. 2012.
  11. S. Chakraborty, D. Roy Mahapatra, S. Natarajan and S. Bordas. “Optimal Integration Scheme for Polygonal Finite Element Method(PFEM) and eXtended Finite Element Method(XFEM) for Isotropic Homogeneous Material”, XFEM-2011, Cardiff, UK, 2011.
  12. S. Chakraborty, S. Singh and D. Roy Mahapatra. “Modeling of Polycrystalline Microstructure Using Polygonal FEM”. SMiRT-21, New Delhi, India, 2011.
 *Presenting author’s name is underlined.
  1. S. Chakraborty. “Development of a self-consistent coupled atomistic-continuum model to study the brittle and ductile fracture in metallic materials”, PhD thesis, Johns Hopkins University, Baltimore(USA), 2020. URL http://jhir.library.jhu.edu/handle/1774.2/62541, [Local Copy].
  2.  S. Chakraborty, “Optimal Integration Schemes for Polygonal Finite Element Method and eXtended Finite Element Method with Isotropic Homogenious and Polycrystaline Material”, Masters Thesis, Indian Institute of Science(IISc), Bangalore(India), 2011. url: Thesis_ME_Subhendu